

National Institute for Research and Development of Isotopic and Molecular Technologies

Efficient search algorithms implementation for SAR image analysis Authors

Bogdan BELEAN | Serban V. Carata | Marian Ghenescu

17 – 19 October 2018

Ro-LCG "Grid Cloud and Gigh Performance Computing in Science"

Efficient search algorithms implementation for SAR image analysis

Content

- A Introduction to satellite imagery
- **B** High Performance Computing for Satellite Imagery
- **c** Application of FPGA technology in High Performance Computing for Satellite Imagery
 - Search Algorithms Optimization
 - Iterative algorithms Optimization

D Conclusions

A Introduction to satellite imagery

3

- The radiation emitted by an energy source (A) covers a given distance and interacts with the atmosphere before reaching the target (C)
- (C) The energy interacts with the surface of the target, and depending on the surface characteristics and on the radiation properties, radiation is reflected or scattered to the sensor (D)
- which quantifies and registers the radiation energy; further on the information is transmitted to a receiving station (E), where it information is transformed into images.
- A visual interpretation of digital the image (F) is then required to extract the desired information related to the target in question.

Introduction to satellite imagery

Satellite image resolution

- spatial resolution, described by the pixel size of the image related to the physical area
- spectral resolution satellite senses the electromagnetic energy at different wavelengths; spectral resolution is defined by the wavelength interval size within a segment of the electromagnetic spectrum and the number of intervals that the sensor is measuring

Examples: visible images - satellite measures sunlight reflected by the earth surface

infrared images – measures the temperature of earth surface with infrared sensor

water vapor images – infrared measurement of the temperature in a layer of the atmosphere about 6 - 10 km above the earth surface.

- *temporal resolution* defined by the amount of time between two consequent image acquisitions for a given surface location
- *radiometric resolution* defined as the ability of an imaging system to record many levels of brightness

Introduction to satellite imagery

Applications of satellite imagery

There are many applications of satellite images in fields such as meteorology, agriculture, geology, forestry, landscape, biodiversity conservation, regional planning, education, intelligence and warfare.

Commercial applications of satellite imagery:

- Insurance companies before and after images to estimate damages
- Mass Media news reports to illustrates where important events occurred
- Software developers incorporate images in flight simulators, games
- Combined with GPS for localization in geographic information systems

The most common example – Google Earth / Pro

Introduction to satellite imagery

6

Α

- Hypothesis increasing the number of high resolution satellites into orbit and the number of applications which use satellite images lead to "big data" to be processed
- Local computing infrastructure offer reduce computing power
- Solution
 - the use of GRID computing power adopted by UNOSAT and CERN
 - use of application specific hardware architectures (FPGA and GPU)

High Performance Computing for Satellite Imagery

7

B

Since 2002 – collaboration CERN and UNOSAT

Satellite images are:

- Compressed,
- Stored and
- Processed.

GRID - The Worldwide LHC Computing Grid (WLCG)

- launched in 2002
- distributed computing infrastructure arranged in tiers
- provides a resource to store, distribute and analyze thousands of petabytes of data generated every year by the Large Hadron Collider (LHC).

UNOSAT

- The UNITAR Operational Satellite Applications Programme
- is a technology-intensive programme delivering imagery analysis and satellite solutions to help make a difference in critical areas such as humanitarian relief, human security, strategic territorial and development planning.
- Mission delivering integrated satellitebased solutions for human security, peace and socio-economic development

High Performance Computing for Satellite Imagery

8

B

How LCG GRID operates

- The process begins with an individual user accessing a user interface (UI) through a personal account a personal account, with a user security certificate installed.
- The user describes a job that will run on the Grid. The job arrives at the Resource Broker (RB).
- A set of services running on the RB machine contribute to match job requirements to the available resources, schedule the job for execution to an appropriate Computing Element – CE (i.e. worknode).
- Each output of the user job performed by the CE is stored on a Grid Storage Element (SE).

Β

Approach for GRID based satellite image processing

In [B1, B2, B3] The satellite images are divided in sub-image in order to reduce size to be processed, and each sub-image can be send for processing to a different

computing element within the grid.

In [B1] Thiessen polygons are used to divide the satellite image

IMITATION (more likely things to be improved)

- In case of iterative algorithms for processing 1 sub-image the computation power is limited by 1 Computing Element
- The computing elements are General Purpose Processors (e.g. Intel® Xeon® Processor E5)
- In case of iterative algorithms general purpose processors are limited regarding parallel processing strategies to be applied

limited regarding parallel processing strategies to be applied [B1] F. Javier Gallego, *Stratified sampling of satellite images with a systematic grid of points*, ISPRS Journal of Photogrammetry & Remote Sensing 59 (2005) 369–376

[B2] Gregory Giuliani, Nicolas Ray, Anthony Lehmann, Grid-enabled Spatial Data Infrastructure for environmental sciences: Challenges and opportunities, Future Generation Computer Systems, 27 (2011) 292–303

[B3] Sauravjyoti Sarmah, Dhruba K. Bhattacharyya, A grid-density based technique for finding clusters in satellite image, Pattern Recognition Letters 33 (2012) 589–604.

High Performance Computing for Satellite Imagery

Integration of ASHA - Application Specific Hardware Architectures for grid based satellite imagery

- **GPU and FPGA represent a solution for parallel processing of satellite images**
 - They can be used in conjunction with the grid based approach for fast processing
 - temporal parallelism
 - spatial parallelism

- Anisotropic diffusion for feature enhancement and edge preserving
- Edge detection
- Circular and linear Hough Trasnforms

- Efficient search algorithms optimization
- Partially Differential Equations PDE involve development of iterative algorithms, a big challenge to be parallelized

Application of FPGA technology in High Performance **Computing for Satellite Imagery**

С

Hough transform implementation

CAM memories

- Value as input
- Returns the address

/test_cam/key	8'h08	8'h00 ()))))))))))))))))))))))))))))))))))
/test_cam/search	0	
/test_cam/reset	0	reset
/test_cam/clk	0	กการการการการการการการการการการการการการ
/test_cam/found	U	match match
/test_cam/full	1	
/test_cam/clk_period	10 ns	10 ns

momory write

Efficient Hough Transform Implementation Using CAM Memories Applied on Satellite Imagery, Application-Specific Hardware Architecture Design with VHDL, B. Belean, Springer, Cham-Switzerland, 2018

Computational power added using our approach

12

- □ Let *C* be the total number of computational steps for processing
- One computational step is composed of a memory read operation m_R, arithmetic operation o_{ALU} or a memory write m_w operation.
- Xeon Processor from E5 families [6]: 12 execution cores with two threads.
- processor frequency is up to $f_a = 3$ GHz.

- 120 PE can be considered for the FPGA implementation
- **processor frequency is up to f_b = 0.3 GHz.**

$$= PxT_{clk}^{a}$$

 $= QxT_{clk}^{b}$

P = 10xbxcxQ

speed-up factor F = $PxT_{clk}^{b}/QxT_{clk}^{a} = (10xbxc)Q \times f_{clk}^{a} / Q \times f_{clk}^{b} \approx 3xbxc$

С

Perona and Malik filter description

- 13
- PDE-based image processing smoothing and restoration purposes.
- In image processing:
 - □ original image **u(x,y)** ⇔ initial state of diffusion like process
 - The diffusion is known as a physical process that equilibrates concentration differences without creating or destroying mass. The mathematical formulation :

$$\partial_t u = div(g(|\nabla \mathbf{u}|^2) \cdot \nabla u)$$

 $g(s^2) = e^{-s^2 \lambda^2}$

- Perona and Malik propose a nonlinear diffusion method for avoiding the blurring and localization problems, by applying an inhomogeneous process that reduces the diffusivity at those locations which have a larger likelihood to be edges. The probability for a specific area to be edge is denoted by $|\nabla u|^2$.
- Finite difference for derivative approximation

 $f'(x) = \lim_{h \to 0} [(f+h)-f(x)] / h$

Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter, Belean B., Belean C., Floare C., Varodi C., Bot A., Adam G., **Computer Research and Modeling**, **2015**, (7)3:399-406

Perona and Malik filter description

Results of the conventional anisotropic diffusion (Perona & Malik) upon a gray scale image aiming edge enhancement are presented next. (Parameters are: the number of iterations *Num_Iter*, integration constant *Delta_T* which is set usually to maximum value and the gradient modulus threshold that controls the conduction denoted by *Kappa*).

Anisotropic diffusion applied for edge enhancement in case of original image *Florida*:
a) *Num_iter* = 5, *Kappa* = 10, b) *Num_iter* = 15, *Kappa* = 10, c) *Num_iter* = 25, *Kappa* = 10,
d) *Num_iter* = 5, *Kappa* = 30, e) *Num_iter* = 15, *Kappa* = 30, f) *Num_iter* = 25, *Kappa* = 30.

Perona and Malik filter description

15

Perona and Malik computational steps

Considering / the initial image which is evolved as follows for N iterations (empirically N = 10 to 20)

STEP 1, STEP 2 and STEP 3 are to be parallelized for efficient computation

Hardware Architectures for Iterative Algorithms Implementations, **Application-Specific Hardware Architecture Design with VHDL**, B. Belean, Springer, Cham-Switzerland, 2018

Hardware Architecture for Perona and Malik filter

16

С

Hardware Architectures for Iterative Algorithms Implementations, **Application-Specific Hardware Architecture Design with VHDL**, B. Belean, Springer, Cham-Switzerland, 2018

c Hardware Architecture for Perona and Malik filter

- 17
- Previously described computational steps are arranged in a **pipeline** architecture:
 - Each computational step has assigned a FPGA based architecture

c Hardware Architecture for Perona and Malik filter

- 18
- The microarray image is delivered pixel by pixel to the computing unit PU with the help of a MICROBLAZE processor, trough the FSL data bus

Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter, Belean B., Belean C., Floare C., Varodi C., Bot A., Adam G., **Computer Research and Modeling**, **2015**, (7)3:399-406

FPGA based SoC for automated cDNA microarray image processing, Belean B., Borda M., LeGal B., Terebes R., **Computerized Medical Imaging and Graphics**, **2011**, (36)5: 419-429

Conclusions

- Field Programmable Gate Arrays represent a solution for both iterative and search algorithms implementation (shortcomings: iterative algorithms are difficult to be parallelized whereas search algorithms need increased resources)
- General purpose processors are surpassed by Application Specific Hardware Architectures regarding computational time
- Future works aim to compare an GPU implementation of the same algorithm with the presented FPGA based implementation
- In case of "Big Data" grid computational power together with Application Specific Hardware Architectures represent a solution for efficient and fast processing.